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We study the average excitation density in a simple model of excitable dynamics on graphs and find that this
density strongly depends on certain topological features of the graph, namely connectivity and degree corre-
lations, but to a lesser extent on the degree distribution. Remarkably, the average excitation density is changed
via the distribution pattern of excitations: An increase in connectivity induces a transition from globally to
locally organized excitations and, as a result, leads to an increase in the excitation density. A similar transition
can be induced by increasing the rate of spontaneous excitations while keeping the graph architecture constant.
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I. INTRODUCTION

Global topological properties of networklike systems have
been discussed intensely in the past few years and, moreover,
provided a unifying perspective on a large variety of biologi-
cal and technical networks �1–5�. Particularly for biological
networks, observed topological features are compared with
those obtained with specific algorithms of graph generation
with the aim of, ultimately, specifying the evolutionary prin-
ciples behind an observed network architecture. Beyond the
level of topology, a huge interest of recent research lies in
dynamic processes on graphs. The key question is how topo-
logical features induce dynamic function. Fields of research
range from genetic networks �see, e.g., �6–8�� to neural net-
works �9,10�, reaction-diffusion processes on graphs �11,12�,
as well as more general forms of dynamics �13–16�. Epi-
demic models are particularly suitable to study the influence
of topological aspects such as the degree distribution and
degree correlations. In recent years, the susceptible-infected-
susceptible �SIS� �17–19� and the susceptible-infected-
removed/recovered �SIR� �17,20–22� models have been ana-
lyzed; however, most of the investigations are targeting the
infection rate and the epidemic threshold of a system
�19,23–25�, while there exist only few results concerning the
stability of dynamic patterns �i.e., the distribution of excita-
tions� and the emergence and interrelation of global and local
excitation as a function of graph architecture �26�. Methods
from dynamical systems theory and particularly from syn-
chronization theory may in the long run be highly useful for
understanding the forms of dynamic organization resulting
from architectural features of the system. The crucial ques-
tion from this pattern-driven perspective is, how are excita-
tions stored in a network and how do features of this storage
pattern change with graph topology?

In this paper, we address the relation between the global
properties of dynamics on a graph and the topological fea-
tures characterizing the graph by studying a specific model
of signal propagation and biological pattern formation,
namely the forest fire �FF� model �27,28�. This formulation
of an excitable medium, which can be implemented on a
graph with arbitrary architecture, helps to understand how
such excitations propagate in a system with complex archi-
tecture and, consequently, how information is processed by

such a system. The version discussed here has been intro-
duced by Drossel and Schwabl �28�, who studied it as a
model system of self-organized criticality. Here, we will ana-
lyze the model in a parameter regime, where on a regular
�two-dimensional� lattice propagating waves are observed.
Mathematically, this model is a cellular automaton with sto-
chastic elements. It consists of three discrete states for each
node �fire F, tree T, empty site E�, which are updated syn-
chronously in discrete time steps according to the following
rules: �i� A tree becomes a burning tree, if there is at least one
fire in its direct neighborhood; if not, accidental ignition oc-
curs with the lightning probability f; �ii� a fire becomes an
empty site; �iii� a tree regenerates �E→T� with growth prob-
ability p. These three states, T, F, and E, correspond the
excitable �susceptible�, excited, and refractory states, respec-
tively, of a generic excitable system. In spite of the choice of
the specific model, we study generic excitable dynamics on
graphs in order to understand how topological properties in-
fluence the distribution and statistics of excitations. Due to
the generic sequence of states inscribed in the model—
excitable→excited→ refractory→excitable—that a node
undergoes, this formal model investigation basically has two
fields of applications: �i� aspects of neural information pro-
cessing and �ii� certain variants of epidemic dynamics. The
parallel to epidemic dynamics becomes apparent, when one
looks at the SIRS model �26�, which is a slightly changed
version of the SIR model. In this model system, the recov-
ered state is able to switch over to the susceptible state, en-
suring persistent signal propagation in contrast to the SIR
model.

In order to quantify the relevance of graph topology, we
use different elementary graph types with variable connec-
tivity. Our aim is to show that the connectivity of a graph
plays a pivotal role for the excitation density in the system
regardless of the degree distribution itself.

II. RESULTS

We investigated three typical graph architectures, namely
�i� the random �ER� graph, introduced by Erdös and Rényi
�29�, which is constructed by randomly adding links to a
given set of unconnected nodes. The ER graph is character-
ized by a Poissonian degree distribution, i.e., every node has
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about the same degree. �ii� The link-added �WS� graph, in-
troduced by Watts and Strogatz �30–32� in the context of the
small-world model analysis. The WS graph consists of a
given ring lattice with N nodes and m=N links, together with
additional randomly added links. Depending on the connec-
tivity, the degree distribution shows ER graph characteristics
and, additionally, a high proportion of small degrees. �iii�
The scale-free �BA� graph, introduced by Barabási and Al-
bert �33�. Our generation algorithm of the BA graph starts
with a complete graph connectivity of m0 nodes. A typical
value of mo is 2 or 3. In each iterative step, a new node is
added to the graph and connected with m links to the nodes
with the highest degrees preferentially. The probability of
linkage is proportional to the degree of a node, and neither
self-links nor double links are allowed. In order to obtain
continuous values of connectivity z, we used noninteger
numbers of m. This value constitutes a certain probability
that the upper next integer number is used instead of m at
each iteration step. We checked that details of the graph gen-
eration algorithm within the general BA framework do not
essentially change our results. Such a network has a power-
law degree distribution with few highly connected nodes
�hubs� and a vast number of sparsely linked nodes.

According to the specific graph generation algorithm, net-
works with N=1000 and varying connectivities were gener-
ated �ER graphs 10−4�z�1, WS graph, and BA graph 2
�10−3�z�1, where z=2m /N�N−1� and m is the number
of links�. In the following, T, F, and E denote the number of
trees, fires, and empty sites; the corresponding state densities
are �T, �F, and �E.

No analytical result of the forest fire model for the de-
scribed graph architectures with variable connectivity has
been obtained so far, but an early salient theoretical approach
to the FF model was the mean-field analysis of the steady-
state densities �34,35�, which can be extended to yield ap-
proximate expressions for the fire density �F as a function of
connectivity, as well as features of the fire distribution on the
graph. Let us assume that in each time step, the k neighbor-
ing nodes are selected randomly and update rules are applied
synchronously. Obviously, neither correlations between
nodes nor degree correlations occur in such a network, since
the number of neighbors is always k. The number of fires,
trees, and empty sites at time t+1 can be derived from the
update rules with the lightning and growth probabilities f
and p and the mean number of neighbors k,

F�t + 1� = fT�t� + kT�t��F�t� , �1�

T�t + 1� = �1 − f�T�t� + pE�t� − kT�t��F�t� , �2�

E�t + 1� = F�t� + �1 − p�E�t� , �3�

where �F is the probability to find a fire as a neighbor of a
tree. Here, we evaluate this general mean-field model in or-
der to obtain an expression for the excitation density �F. For
small fire densities, higher-order contributions can be ne-
glected and the probability �F is simply given by the fire
density �F�t�=F�t� /N. The steady-state solution for �F can
be found by multiplying the above equations with 1/N �in
order to pass from absolute numbers to state densities�, set-

ting ��t+1�=��t�, and using the subsidiary condition 1=�F

+�T+�E. While both solutions of the quadratic equations for
�F constitute stable fixed points, only one of them yields
positive values for the fire densities. With the connectivity z
and n=N−1, this solution can be written as

�F =
nzp − f − p − fp + �− 4nzp2 + �f + p + fp + nzp�2

2nz�1 + p�
.

�4�

This mean-field approach is widely used to understand the
properties of the FF model run on d-dimensional lattices
�36�. However, it is by construction a much better approxi-
mation for the case of ER graphs, where the degree devia-
tions around a mean degree k are small and degree correla-
tions are absent. What is known about the synchronization of
excitations in such a system? On lattices of sufficiently high
N, global synchronized excitation events are nonexistent. A
regular structure without shortcuts and a high network diam-
eter favor the formation of propagating waves, thus leading
to a persistent level of excitations.

For p� f we argue that the parameter p affects primarily
the overall time scale of the dynamics. Therefore, we tested
different parameter settings and confirmed the assumption
that over a wide range of p the overall proportions of exci-
tation patterns are marginally influenced and �F simply
scales with p. In the following, we used two parameter set-
tings �p=0.08, f1=3�10−5, f2=3�10−2� in order to test the
f dependence of the excitation patterns. The length tmax of
each simulation was 25000 updates; 10 simulations were per-
formed for each network-parameter constellation. In Fig.
1�a�, the mean fire density ��F� is plotted as a function of the

FIG. 1. �a� Connectivity z dependency of the mean fire density
��F� for random graphs �simulated results �ER� and mean-field ap-
proximation �MF� with f =3�10−5 �f =3�10−2� and p=0.08�. The
MF-ER curve depicts the deviation between analytical and simu-
lated results. The maximal deviation around z=1.5�10−5 indicates
the connectivity where the m /n ratio of the giant cluster exceeds 1.
�b� ER graph percolation represented by the relative size of the
largest connected cluster Ng.cl. and the percolation threshold zc.
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connectivity z for both the simulated and the analytical re-
sults. For the interpretation of these results, percolation ef-
fects have to be taken into account, i.e., the phenomenon that
in the ER model the transition from an unconnected to a
connected graph with increasing connectivity takes place via
a large connected subset �giant component� surrounded by
small unconnected fragments emerging in the graph. At a
certain connectivity, this component comprises the whole
graph. The ER graph percolation was determined by comput-
ing the size of the giant cluster �Fig. 1�b��. The theoretical
percolation threshold is given by zc=1/N �1�. As one can see
from the difference between the numeric simulation and the
analytical result in Fig. 1, the analytical result shows a com-
paratively increased excitation density right above zc. The
phase transition at this threshold, where a giant component
appears in the system, is already incorporated by the steady-
state model ��F→0 for z→zC in Eq. �4��. Therefore, this
deviation cannot be explained by percolation effects. A
closer look at the time series of the simulations for low z
reveals two regions that differ fundamentally in their excita-
tion patterns �Fig. 2�a��. The first regime exhibits very short
and strong excitations �spikes�, which can be interpreted as
globally coinciding events �Fig. 2�b��, while in the second
regime long-lasting density fluctuations �bursts� with clearly
reduced intensity occur as a result of local consecutive coin-
ciding events �Fig. 2�c��.

When averaged over time, the fire density in the spike
regime is considerably smaller than for bursts. It is given by
the mean distance between two spikes lspike �Fig. 2�b�� and
the mean number of trees burned in one spike event. From
Eq. �4�, one can see that the overall excitation in a sparsely
connected graph �z�zc� with f � p depends mainly on the
parameter f , thus explaining the increase of ��F� for f2=3
�10−2. In a graph with no connections and small lightning
probability f , the density ��F� matches f . In the limit of in-
finite system sizes and z=1, Eq. �4� can be simplified to �F

= p
1+p . Both limiting values agree numerically with the as-

ymptotics of the corresponding curve in Fig. 1�a�.

In order to study the relation of the connectivity depen-
dence and percolation effects, we compared simulation re-
sults of the BA and WS graphs with the ER graph results.
Figure 3�a� shows the plots for all three graph types for p
=0.08 and f =3�10−5. Surprisingly, all curves show similar
transitions of �F above the percolation threshold zc. Figure
3�b� shows segments of the time series for three different
values of z of the BA graph. The time series z=0.002 con-
tains only spike regimes, the time series z=0.063 has only a
burst regime, and the one in the transition region z=0.0025 is
characterized by the coexistence of spike and burst regimes.
Thus, a change in z induces a change in the distribution
pattern of excitations and, as a result, in the entire excitation
density. The similarity of the three curves constitutes an un-
expectedly marginal influence of the degree distribution on
the excitation density. The degree distribution is the most
important distinctive characteristic of these three graph to-
pologies. However, in regulating the average amount of ex-
citations within the graph, it only plays a minor role.

To confirm this scenario of an increased �F due to a quali-
tative change in the distribution pattern of excitations, we
quantified the excitation density of the burst regimes for the
BA graph as a function of connectivity and compared it with
the mean fire density ��F� �Fig. 4�. For further comparison,
the excitation density of the burst regimes in an ER graph
was added. The similarity in curve forms suggests that the
excitation strength is a direct consequence of the proportion
of global and local coincidences, i.e., at the switch from
spikes to bursts. Additionally, the low-z behavior can be in-
terpreted in a similar form: Results for the ER graph support

FIG. 2. �a� Time series of the fire density �F of a random graph
�z=0.006; N=1000� with f =3�10−5 and p=0.08. Sections display
the typical dynamical behavior, namely �b� the spike regimes,
where lspike is the duration between two adjoining spike events and
�c� the burst regimes, where lburst is the duration of a burst. FIG. 3. �a� Connectivity z dependence of the mean fire density

��F� for three different graph types: random graph �ER�, scale-free
graph �BA�, and link-added graph �WS� with f =3�10−5 and p
=0.08. �b� Sections of time series of fire density �F of the BA graph
for different connectivities. For the smallest value of z, i.e., z1

=0.002, excitation is solely induced by spike dynamics; for values
above z3=0.0063, burst dynamics prevails. The transition region in
between shows both excitation patterns of varying ratio, e.g., for
z2=0.0025.
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the idea that a giant cluster is able to produce bursts even
below the threshold of z=0.002, where a connected BA
graph is formed, and for this reason contributes more to the
excitation strength than expected from the overall connectiv-
ity. This leads to a shift �toward lower z values� at the cor-
responding curve in Fig. 4.

Results for different lightning probabilities f in the ER
graph studies �see Fig. 1�a�� suggest that f is influencing the
distribution of excitations in a likewise manner as the net-
work connectivity. Therefore, we repeated the simulations
for the three different graph architectures �ER, BA, and WS,
each with N=1000�, this time keeping the graph connectivity
and the growth probability constant at z=0.006 and p=0.02,
respectively, while varying the lightning probability in the
range of 10−7� f �1. Figure 5�a� depicts the results for the
mean fire density ��F� of these simulations �25000 updates,
10 runs for each network-parameter constellation�. The dis-
tinct transition to higher �F under the increase of spontane-
ous excitations is induced by a shift in the distribution pat-
tern of excitations from spike to burst dynamics �see Fig.
5�b��, which has also been observed in the topological in-
duced transition �Fig. 3�. A difference between both transi-
tions is the plateaulike behavior at intermediate values of f .
In this regime, the excitation density ��F� is almost indepen-
dent of f , and only at even higher values of f is a further
increase of ��F� seen. The limiting factor in this range of
intermediate f is the number of trees: A constant ��F� sug-
gests that, on average, any node spontaneously excited
within a time step would also be excited by an excitation in
the immediate neighborhood. Increasing p reduces this pla-
teau regime �data not shown�, as expected from this argu-
ment.

Raising the control parameter f is comparable to an in-
crease of the connectivity. By adding links to a network
�31,37�, as in the generation rule for WS graphs, shortcuts
are generated that are able to transport excitations to subparts
of the network, which were not accessible before. From the
perspective of the region in the graph, to which the shortcut
leads, this corresponds to accidental excitations, quite similar

to the spontaneous excitations governed by f . The general
similarity between shortcuts and noise has also been studied
in �38�. Therefore, an increase in the parameter f results in a
shift toward burst dynamics especially for low connectivities
and in a ��F� enhancement at the same time.

The type of distribution pattern depends on the availabil-
ity of excitable nodes �i.e., nodes in the T state� and on the
interval between two excitation incidents. The closer these
events are, the more likely is the formation of a burst, be-
cause the system possesses a high quantity of refractory
nodes E. Within burst events, simultaneous excitation is
achieved only in parts of the network; fractions of nodes in
state E are regenerated and are thus accessible for excitation
during the next time step. The maintenance of locally and
simultaneously excited parts leads to a signal persistent in
time. The essential topological feature to produce a burst in
the FF model seems to be the availability of loops, i.e., se-
quences of links connecting a node with itself. This charac-
teristic is only possible in networks with m /N�1. At a con-
necticity level of z=0.002, which is the lower boundary for a
connected graph at N=1000, the BA and WS graphs do not
possess any loops �except for a trivial systemwide loop�, and
are therefore only able to produce spike events. In ER
graphs, the topological properties of the giant cluster play an
important role for the formation of a burst. In a giant cluster,

FIG. 4. The integrated excitation density in the burst regime
�bursttburst / tmax depending on connectivity z for the ER graph and
the BA graph �solid lines� compared to the results of the mean fire
density ��F� of the ER graph �dashed line�.

FIG. 5. �a� Lightning probability f dependence of the mean fire
density ��F� for three different graph architectures: random graph
�ER�, scale-free graph �BA�, and link-added graph �WS� with con-
nectivity z=0.006 and p=0.02. �b� Sections of time series of fire
density �F of the BA graph for different lightning probabilities.
Corresponding to the effects of the connectivity z �as shown in Fig.
3�, small values of f , e.g., f1=3�10−5, induce weak excitations
caused by a single spike regime; for values above f =0.01 predomi-
nant burst dynamics cause the highest excitations �see f3=0.1�. In
between are excitation patterns showing both regimes of varying
ratio, e.g., for f2=1.6�10−4.
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the ratio of links and nodes exceeds 1 for even smaller values
of z, thus producing bursts and explaining the elevation of
��F� �ER� for low connectivities and, moreover, explaining
the point of the largest deviation between ER graph simula-
tion and the mean-field approximation, which lies between zc
and z=0.002 �Fig. 1�a��.

We extended our analytical approach to the FF model for
complete graphs. A detailed description is given in Appendix
A. With this groundwork it is possible to evaluate the fire
density �F and the proportion of the respective dynamical
regimes �e.g., the temporal fraction of the burst regimes
aburst� for each constellation of the lightning probability f and
the tree growth probability p �see Eqs. �A3� and �A4��. We
compared the analytical results for a complete graph �N
=500, p=0.01, and 10−6� f �1� with the corresponding nu-
merical results from simulations �25000 updates with 25 runs
for each parameter constellation�. This comparison is illus-
trated in Fig. 6 with the computation of the mean fire density
��F�. The comparative analysis of aburst �data not shown�
yields a similar result. Despite small variations, the analyses
predict the simulated results very well and may thus serve as
a basis for further studies of the FF model on graph archi-
tectures with variable connectivity and degree correlations.

As a second topological property, we investigated the in-
fluence of degree correlations on the dynamical behavior. To
alter the degree correlations, we used a method of Trusina et
al. �39�, who introduced a concept to distinguish between
hierarchical and antihierarchical networks. For this investi-
gation, scale-free networks are best suited because they show
a broad degree distribution. In our investigations, we find a
distinct shift toward higher �F with increasing antihier-
archization, especially in the transition region of �F �data not
shown�. As stated before, an increase of �F results from a
proportionate enhancement of the burst regimes. During an-
tihierarchization, hubs are continuously separated from each
other by nodes with small degrees, thus increasing the diam-
eter and the modularity of the whole network at the same
time. As a consequence, parts of the network show an in-
creased connectivity compared to their neighborhood and are
thus able to produce bursts on a local level. In contrast to
this, hierarchized networks are characterized by linked hubs
and treelike chains of nodes. The ability to produce bursts is

reduced to the densely linked center of the network, while
spike behavior is comparatively enhanced. These topological
differences are more noticeable the more sparsely the net-
work is connected, resulting in the largest deviations of the
fire density �F for different values of kA at the same time.

III. DISCUSSION

We have demonstrated that the forest fire model is in prin-
ciple capable of exhibiting two forms of distribution pattern
of excitations on graphs, namely bursts and series of spikes.
These patterns are characterized by different excitation stor-
ing capacities. Thus, the transition from low to high excita-
tion densities is accompanied by a transition in the excitation
patterns. This switch to high excitation densities �and, corre-
spondingly, from one excitation pattern to the other� can be
triggered topologically �by increasing the network’s connec-
tivity� or dynamically �by increasing the probability of spon-
taneous excitations�.

In a recent study of coupled integrate-and-fire neurons, a
similar transition from spikes to a burstlike regime of persis-
tent excitations has been related to the functioning of the
working memory �9�, and in an epidemiological study of the
SIRS model the increase of the excitation density with con-
nectivity is explained by phase transition to global synchro-
nization �26�.

The crucial influence of the connectivity of a network on
the excitation density is accompanied by topological effects
of higher order, the degree correlations, which are reflected
in modular properties, while the degree distribution seems to
play a subordinate role in this context.

In biological systems, the ability to produce a recurrent
distribution pattern of excitations may contribute to function,
resulting in a link between functional properties and struc-
tural features. In a certain sense, a process may dynamically
integrate groups of nodes to form dynamical �nonstationary�
modules �burst behavior� within the given topological frame-
work of the graph. It would be interesting to see if �and
under which conditions� such dynamical modules coincide
with topological modules and, furthermore, if such an ex-
plicit exploitation of topology by dynamics may even en-
hance dynamical features, such as the amount of excitations
stored within a graph.

APPENDIX A: PROBABILISTIC CALCULATION OF THE
FIRE DENSITY

Here, we derive probabilistic expressions for the analyti-
cal calculation of the fire density, as shown in Fig. 6 for a
complete graph. As in the main text, the forest-fire dynamics
is well defined by the tree growth probability p, the lightning
probability f , and the system size N.

We first consider the extreme case of f =1, where every
growing tree burns immediately. The overall fire density �F
is determined by the average number of growing trees in one

time step, T̄= pĒ, where Ē is the average number of empty
sites in the system. This quantity differs from N by existing

trees �which is pĒ� and already burning sites �again pĒ�, Ē

=N−2Ēp. Therefore,

FIG. 6. Numerical and analytical results for the f-dependent fire
density ��F� in a complete graph �N=500�.
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Ē =
N

1 + 2p
�A1�

and the average fire density is given by

�F�f = 1� =
pĒ

N
=

p

1 + 2p
. �A2�

Note that the corresponding time series may comprise cases
in which no trees grow at all and the fire extinguishes.

For f �1, the time series is made up of bursts and spikes.
To calculate the fire density �F for a given parameter set
�N , p , f�, we have to account for both dynamical regimes,

�F = aspike�spike + aburst�burst, �A3�

where �x is the fire density in the regime x and ax is the
proportion of the respective regime in the total time series.
We define this quantity by

aburst =
lburst

lburst + Slspike
= 1 − aspike, �A4�

where lburst is the typical burst length, lspike is the typical
separation of two spikes, and S is the mean number of con-
secutive spikes in a typical time series �see Figs. 2�b� and
2�c��.

In the remainder of this appendix, we restrict our deriva-
tions to complete graphs, i.e., graphs with connectivity z=1,
where every node is connected to all other nodes in the net-
work. This is an approximation to general topologies, but
nonetheless a worthwhile case study, where salient features
of the mixture of bursts and spikes can be thoroughly under-
stood.

The number of fires in the burst regime on complete
graphs equals the number of growing trees under the condi-
tion that at least one tree grows in every time step, so that the
burst proceeds. The probability for a burst to stop equals the
probability that no trees grow on the empty sites in one time

step, Pstop= �1− p�Ē. Including the conditional probability
1 / �1− Pstop� and Eq. �A2�, the fire density in the burst regime
reads

�burst =
1

1 − �1 − p�Ē

p

1 + 2p
. �A5�

The probability for a burst of length l is given by
�1− Pstop�l−1Pstop. The first moment of this distribution is the
average burst length. With Eq. �A1� follows

lburst = Pstop
−1 = �1 − p�−N/�1+2p�. �A6�

Both quantities are independent of f .
In the spike regime, lightning ignites a tree that ignites a

large part of the system in the next time step. The principal
time scale is the typical separation of two spikes, lspike. This

quantity clearly incorporates the mean waiting time for a
spark tspark on a growing forest.

The number of growing trees in one time step follows a
binomial distribution. The mean number of trees to grow on
E empty sites in one time step is Ep. The mean number of
grown trees after t time steps can be recursively determined,

T̄�t�= T̄�t−1�+ p�N− T̄�t−1��, and equals

T̄�t� = N − �N − T�0���1 − p�t. �A7�

Therein, T�0� is the number of trees in the first time step after
a burst or spike has stopped. �After a burst, the mean number

of growing trees equals p�N− Ē�=Np 1+p
1+2p .� The probability

for no lightning to occur in a system with T trees is �1− f�T.
Lightning at time t implies that one of the trees present at t
−1 has been ignited. Thus the probability Pspark for lightning
at time t=1 is Pspark�1�=1− �1− f�T�0�; for t�2 it follows that

Pspark�t�= �1− f���=0
t−2 T̄����1− �1− f�T̄�t−1��. The mean waiting

time for lightning to occur in a growing forest is

tspark = �
t=1

	

tPspark�t� . �A8�

The average distance between two spikes in a complete
graph is

lspike = tspark + 2, �A9�

where one time step each for the ignition of the graph and
the complete burning has to be added by hand. For simplic-
ity, we only regard the spike case where the fire dies out
again after two time steps. The average number of fires in a
spike equals the number of grown-up trees at time tspark when
the lightning ignites the first fire. For the fire density in the
whole regime it follows with Eqs. �A8� and �A9� that

�spike =
Fspike

N

1

lspike
=

T̄�tspark�
N

1

lspike
. �A10�

To fully determine the spike regime properties, we need to
know the number of spikes in a row. The condition for con-
secutive spikes is that no trees grow on the empty sites E
during the ignition of the graph. The corresponding probabil-
ity is

Pspike = �1 − p�E�tspark� = �1 − p�N−T̄�tspark�, �A11�

The mean number of spikes between two bursts can then be
calculated by

S = �
s=1

	

sPspike
s−1 �1 − Pspike� =

1

1 − Pspike
. �A12�

Plugging the above expressions into Eq. �A3� yields the
fire density for every parameter set on a complete graph.
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